Hypoxia Induced Preferential Ketone Utilization by 319 Rat Brain Slices
نویسنده
چکیده
When exposed to hypoxia, intact mice, with elevated blood ketones, live longer than mice with normal blood ketones. To evaluate a possible mechanism responsible for this phenomenon a rat brain slice preparation was used to determine if brain tissue would utilize glucose or ketones preferentially during exposure to reduced oxygen. Reducing available oxygen in the incubation medium from 95%, in steps, to 5% produced the expected gradual reduction in the carbon dioxide formation from glucose. In contrast, reducing the oxygen level to 40 and 20% resulted in a statistically significant stimulation of the production of carbon dioxide from the ketone beta-hydroxybutyrate. At very low oxygen levels carbon dioxide production from either substrate was reduced. These results are consistent with the hypothesis that ketones can be used in addition to glucose as a substrate for brain energy production even during reduced oxygen availability. If the increase in carbon dioxide production from ketones can be equated with an increase in energy production from this supplemental substrate than ketones may be therapeutical!)' useful in avoiding the collapse of brain function during moderate hypoxia. Stroke Vol 15, No 2, 1984
منابع مشابه
Hypoxia Induced Preferential Ketone Utilization by 319 Rat Brain Slices
When exposed to hypoxia, intact mice, with elevated blood ketones, live longer than mice with normal blood ketones. To evaluate a possible mechanism responsible for this phenomenon a rat brain slice preparation was used to determine if brain tissue would utilize glucose or ketones preferentially during exposure to reduced oxygen. Reducing available oxygen in the incubation medium from 95%, in s...
متن کاملHypoxia induced preferential ketone utilization by rat brain slices.
When exposed to hypoxia, intact mice, with elevated blood ketones, live longer than mice with normal blood ketones. To evaluate a possible mechanism responsible for this phenomenon a rat brain slice preparation was used to determine if brain tissue would utilize glucose or ketones preferentially during exposure to reduced oxygen. Reducing available oxygen in the incubation medium from 95%, in s...
متن کاملGlucagon stimulates ketone utilization by rat brain slices.
Glucagon has been shown previously to increase further the enhanced tolerance for hypoxia observed in mice with elevated blood ketones. Glucagon is also known to increase blood glucose and to alter directly the metabolism of some (liver) cells. Both the increase in blood glucose and altered cellular metabolism could contribute to the increase in tolerance for hypoxia observed in mice given gluc...
متن کاملGlucocorticoid toxicity in the hippocampus: reversal by supplementation with brain fuels.
Glucocorticoids (GCs) can damage neurons of the hippocampus, the principal target tissue in the brain for the hormone. Hippocampal neuron loss during aging in the rat is accelerated by prolonged GC exposure and decelerated by adrenalectomy. GCs appear to damage these neurons indirectly by inducing a state of vulnerability and thus impairing their capacity to survive a variety of metabolic chall...
متن کاملElectrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices
Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...
متن کامل